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Abstract

The aim of this paper is to demonstrate that in cable-stayed structures dynamic amplification factors caused by the

sudden breakage of cables can be larger than 2. This fact is extremely important since design guidelines for cable-stayed

bridges indicate that the highest value for such factors is 2, whereas under certain circumstances that value could be

considered unsafe. We set out the conditions that lead to that value being surpassed. We also show that the dynamic

amplification factors related to deflections are lower than those related to bending moments and that the latter are in turn

lower than those related to shear forces. Two examples are given: one involving the abrupt application of loads to a simply

supported beam and the other the accidental breakage of a stay cable in a bridge with under-deck cable-staying.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

When an action is applied to a structure slowly, i.e. over a time that is more than twice as long as the main
vibration period of the structure, the response of the structure is practically the same as its static response.
However, if the action is applied more rapidly, the structure shows a dynamic response. In this case for the
given structure and the given action we can define, for each section and for each movement or internal force, a
dynamic amplification factor (DAF), which is the ratio of the maximum dynamic response to the static
response.

Therefore, the maximum dynamic response in a given section to a given action can be evaluated in one of
the following two ways: (1) we can make a dynamic calculation, or (2) we can make a static calculation, if we
know the dynamic amplification factor appearing in this critical section of the structure for this response and
this action.

Much research has focused on the establishment of dynamic amplification factor for bridges with the aim of
supplying these values to engineers by means of design guidelines. However, some dynamic amplification
factors have been established in guidelines without thorough research. This is the case of dynamic
amplification factors for abrupt breakage of cables in cable-stayed bridges. In this case, all the guidelines limit
the dynamic amplification factors to an upper bound of 2, since this is the maximum value for one degree of
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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freedom (dof) systems under abrupt load application. But dynamic amplification factors may be larger than
two in multi-dof systems.

The aims of this paper are to prove analytically and numerically that dynamic amplification factors for
abrupt breakage of cables in cable-stayed bridges can be larger than 2, to explain what conditions must
happen for that value be surpassed, and to corroborate the theory by two examples.

2. Research into dynamic amplification factors

By far the majority of studies have focused on evaluation of dynamic amplification factors as a result of
traffic live loads of bridges, first for road bridges, and then for railway bridges.

In 1992, Paultre et al. [1–3] carried out a review of all the analytical and experimental studies that had
previously been carried out. At the time, dynamic amplification factors were estimated on the basis of just one
parameter, namely the span or the principal vibration frequency. The first analytical studies evaluated the
maximum dynamic amplification factors relative to the deflection of simple beams and different boundary
conditions at the supports [4,5]. In 1993, Humar and Kashif published a study in which they showed that
dynamic amplification factors depend on the velocity and weight of the vehicle [6]; it criticised the continued
evaluation of DAFs on the basis of a single parameter [6,7]. In 1997, Henchi et al. extended analytical studies
to the subject of continuous bridges [8]. Since then, a number of studies have been made showing that dynamic
amplification factors depend on various factors, namely the geometry of the bridge, the type of load, the
velocity of the vehicles [9] and the roughness of the deck surface [10–12]. In addition to studying dynamic
amplification factors for road bridges, studies were also made for railway bridges, since the consecutive
application of loads with a given frequency can give raise to a considerable increase in DAFs [13,14]. In fact,
clauses from codes for actions on road bridges provide the values of the actions that have been already
amplified taking into account the dynamic amplification factors, while clauses from codes for actions on
railway bridges provide the static values of the actions to be amplified using the DAFs that have to be
expressly calculated for the bridge being designed. Likewise, many experimental studies have been made of
existing bridges [15–18] with the aim of evaluating actual DAFs and comparing them to the design values
provided in the codes.

Although most studies have focused on the action of traffic live loads, not all the existing studies refer to
that action. Recently, some studies have been made and a number are underway on the subject of dynamic
amplification factors related to the accidental breakage of stay cables in cable-stayed bridges. The first
dynamic study to evaluate these factors was carried out by Välimäki [19,20] and established dynamic
amplification factors of 1.80 in critical sections. In the doctoral thesis [21] written and supervised by the
authors of this paper, among other aspects, the safety of under-deck cable-stayed bridges in the event of
accidental breakage of stay cables was studied. One part of that study formed the basis for this paper. The
second author of this paper is, at present, supervising another doctoral thesis (developed by C. Mozos) on the
subject of accidental breakage of stay cables in conventional cable-stayed bridges. It is worth noting that,
while there is abundant literature dealing with dynamic amplification factors related to traffic live loads of
bridges, very few studies have been made of dynamic amplification factors related to the accidental breakage
of stay cables in bridges or other cable-stayed structures.

3. Dynamic amplification factors due to accidental breakage of stay cables in design guidelines for cable-stayed

bridges

The breakage of stay cables is an accidental event that must be taken into account in the design of a cable-
stayed structure. It must be established that, in the event of this accidental breakage, the structure will not
collapse.

In order to determine the response of the structure to an event of this kind, a dynamic analysis is required.
This will involve obtaining the internal forces in any section and the movements of any given point of the
structure at any given time. This allows one to establish the maximum internal forces or the maximum
movements that occur in the course of the dynamic response of the structure before it is eventually damped.
However, it is quite common for the maximum internal forces or maximum movements, caused by such an
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accident, to be obtained from a static analysis, with the static response being amplified by dynamic
amplification factors.

There are various guidelines for the design of cable-stayed structures and they all include dynamic
amplification factor values for determining the response of the structure to the accidental breakage of a stay
cable. These values are invariably based on static calculations.

SETRA’s guidelines for the design of cable-stayed bridges [22] indicate that the accidental breakage of a
stay cable has to be considered. An equivalent static calculation must therefore be carried out, taking into
account a dynamic amplification factor of between 1.5 and 2.0. These recommendations state that the dynamic
amplification factor will depend on the origin of the breakage and on the structure. They note that 2.0 is a
maximum value that corresponds to the sudden breakage of the whole stay cable section. Hence, taking into
consideration that a whole stay cable section breakage is improbable, when compared to the occurrence of a
partial breakage, they consequently recommend the standard use of a value of 1.5. The PTI [23] calls for a
similar procedure, with a recommended amplification factor equal to 2 in this case.

In the draft of its recommendations for cable-stayed bridges [24], the ACHE, like the other organisations
already mentioned, indicates the need to verify ultimate limit states in the event of the accidental breakage of a
stay cable. Two alternatives are suggested: dynamic verification and static verification using a dynamic
amplification factor of 2. A dynamic amplification factor equal to 1.50 is also being considered in the draft of
Eurocode 3 Part 1.11 [25].

In our opinion, SETRA is right to claim in its recommendations that the dynamic amplification factor will
depend on the type of occurrence that causes the breakage of the stay cable (vehicle collision, fire, corrosion,
etc.). Thus, the time required for breakage due to fire is longer than for breakage due to vehicle collision. The
shorter the time in which the action causing the breakage of the stay cable lasts, the greater the dynamic
response of the structure and, consequently, the greater the dynamic amplification factors. Practically
instantaneous breakage constitutes the worst case scenario. If we know the variation in the load function in
the stay cable during the breakage period (F(t)6¼0 where totbreakage and F(t) ¼ 0 where tXtbreakage), we can
make a more accurate calculation. For the duration of the breakage, the dynamic response will be in the form
of forced vibrations and after that time the response will be in the form of free vibrations.

Nevertheless, it is important to bear in mind that in the case of sudden breakage of cables in cable-stayed
bridges, the dynamic response is practically independent of the load function F(t), since the breakage times to
be taken into consideration (breakage times in the event of impact) are very small in comparison with the
fundamental period of the structure. If we consider an instantaneous breakage, the response will be similar to
what would occur in the event of breakage due to a collision, although slightly larger than in the latter case,
but in any event on the safe side. In the case of cable-stayed structures with smaller vibration periods, such as
certain roof structures, we will need to know the breakage function so as not to overestimate the response of
the structure to this action.

It must be said that the value for the dynamic amplification factor given by the guidelines is questionable. In
an undamped system with a single dof, the dynamic amplification factor in the event of instantaneous actions
is always equal to 2. However, in systems with more dofs and therefore more vibrational modes, this is not
always the case; indeed, in certain cases the dynamic amplification factor may be larger than 2, as we will show
in this paper.

4. Upper limit of dynamic amplification factors related to deflections

The upper limit of the dynamic amplification factor related to deflections can be determined analytically. If
we apply a load q(x) to a structure, the structure is deformed and will begin to oscillate around a new position
of equilibrium, which will be the position corresponding to the static deformation of the structure under load
q(x). The larger the application speed of load q(x), the more pronounced the initial oscillations around that
position will be. If the load is applied very slowly, the magnitude of those oscillations will be negligible and the
dynamic amplification factor related to deflection will have a value of 1. To obtain the upper limit of the
dynamic amplification factor, we must assume that load q(x) is applied very quickly or even instantaneously.

The dynamic oscillations around the equilibrium position will gradually decrease in magnitude as the energy
is dissipated by the damping effect of the structure. Once the structure has stopped moving, the deformation
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will be equal to the static deformation. First of all, in order to determine the upper limit, let us assume that it is
an undamped structure. In this case, the dynamic response of the structure to load q(x) applied
instantaneously in t ¼ 0 is

ydynamicðx; tÞ ¼
X

i

viðxÞAið1� cosðoitÞÞ (1)

and the static response of the structure to that same action is

ystaticðxÞ ¼
X

i

viðxÞAi, (2)

where ydynamicðx; tÞ is the deflection at the location x on the x-axis at time t, while ystatic(x) is the static
deflection. The vibrational mode i is vi(x), the angular frequency is oi, and Aivi(x) is the projection of the
structural response on the vibrational mode vi(x), where Ai is a value that can be either positive or negative. In
fact the static response of the structure, ystatic(x), is projected onto a vectorial space with an orthogonal base
consisting of the vibrational modes of the structure, the coefficients Ai being the coordinates of the static
response in that vectorial space.

The maximum dynamic response will occur at the instant when the functions (1�cos(oit)) take the following
values: 2, which is the maximum value, for all the functions associated with vibrational modes where Aivi(x)
has the same sign as ystatic(x) (i.e. the vibrational modes where the response of the structure has a positive
projection); and 0, which is the minimum value, for all the functions associated with vibrational modes where
Aivi(x) has the sign opposite to ystatic(x) (i.e. the vibrational modes where the response of the structure has a
negative projection). Due to being an undamped structure, from a numerical point of view, the instant in
which these conditions are satisfied is always reached.

Consequently, the maximum dynamic response is given by the following expression:

ydynamic;maxðxÞ ¼
X

i

viðxÞAi2di, (3)

where

di ¼

0 if
Aivi xð Þ

ystatic xð Þ
o0;

1 if
Aivi xð Þ

ystatic xð Þ
X0;

8>>>><
>>>>:

(4)

Having defined the dynamic amplification factor related to deflections as the ratio of the maximum vertical
deflection to the static vertical deflection, we can state that it is equal to

DAFdeflection xð Þ ¼
ydynamic;max xð Þ

ystatic xð Þ
¼

P
ivi xð ÞAi2di

ystatic xð Þ
, (5)

DAFdeflection xð Þ ¼

P
ivi xð ÞAi2�

P
ivi xð ÞAi2 1� dið Þ

ystatic xð Þ
¼ 2�

P
ivi xð ÞAi2 1� dið Þ

ystatic xð Þ
(6)

and having defined the function d* as

d�i ¼

1 if
Aivi xð Þ

ystatic xð Þ
o0;

0 if
Aivi xð Þ

ystatic xð Þ
X0;

8>>>><
>>>>:

(7)

we can obtain a more concise expression of the dynamic amplification factor related to deflections, i.e.

DAFdeflection xð Þ ¼ 2þ
X

i

vi xð ÞAi

ystatic xð Þ

����
����2d�i . (8)
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Consequently, in undamped systems, if there is no vibrational mode for which the projection of the structural
response on the vibrational mode is negative (i.e. if there is no mode in which d* ¼ 1), the dynamic
amplification factor will be exactly equal to 2. Conversely, if there is a vibrational mode for which the
projection of the response on the vibrational mode is negative (i.e. if there is a mode in which d* ¼ 1), the
dynamic amplification factor will be larger than 2. In the latter case, the larger the weight of the vibrational
modes with negative projection in the structural response is, the larger the dynamic amplification factor will
be.

In damped systems, the dynamic response of the structure to a load q(x) applied instantaneously (t ¼ 0) is

ydynamic x; tð Þ ¼
X

i

vi xð ÞAi 1� e�Zioi t cos oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2i

q
t

� �
þ

Ziffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2i

p sin oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2i

q
t

� � ! !
, (9)

where Zi is the damping ratio in relation to critical damping for the mode i.
Without losing accuracy from the practical point of view, Expression (9) can be simplified. Damping ratio

values depend on several factors: the structure, the materials, the vibrational mode shape, the action applied,
and so on. These values are very small (less than 10%) for common types of structures [26–28] and even
smaller (less than 2%) for cable-stayed structures [29], so the second term in Expression (9) may be considered
to be negligible, and then the equation becomes:

ydynamic x; tð Þ �
X

i

vi xð ÞAi 1� e�Zioi t cos oi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2i

q
t

� �� �
. (10)

With time, the oscillations are damped: the vibrational modes associated with high frequencies of vibration are
damped first, while the low frequency vibrational modes, namely the primary vibrational modes of the
structure, take longer to be damped.

When the maximum dynamic response is reached, a certain amount of time will have passed and part of the
response will have been damped. Thus the DAF related to deflections will be less than it would have been if the
structure was undamped. In this case the harmonic functions associated with vibrational modes with positive
projections on the structural response are damped and their value is less than 2. Consequently, in damped
systems, the DAF related to deflections can be larger than 2, but for this to be the case, it is necessary, but not
sufficient, that there is at least one vibrational mode in which the projection of the response on that vibrational
mode is negative. Otherwise, i.e. if there is no vibrational mode in which the projection of the response is
negative, the DAF related to deflections will be less than 2 in damped systems.

Therefore, the DAF related to deflections of a damped structure will be less than the DAF of an undamped
structure and will be given by the following expression:

DAFdeflection xð Þo2þ
X

i

vi xð ÞAi

ystatic xð Þ

����
����2d�i . (11)

5. Dynamic amplification factors related to internal forces

Before obtaining the expressions for dynamic amplification factors related to internal forces (bending
moments and shear forces), a simple example is presented. The analytical expressions obtained in the previous
section for DAFs related to deflection (Expressions (8) and (11)) are valid as a general rule. However, the
analytical expressions that will be obtained in this section are not valid on such a general level, although they
help to draw some conclusions of a general nature.

In a simply supported isostatic beam of length L, vibrational modes v�i ðxÞ are given by the expression

v�i ðxÞ ¼ sin ip
x

L

� �
. (12)

Consequently, in an undamped system subjected to a load q(x) that is applied instantaneously at time t ¼ 0,
the dynamic vertical movements can be obtained by substituting Expression (12) into Expression (1)

ydynamicðx; tÞ ¼
X

i

sin ip
x

L

� �
Aið1� cosðoitÞÞ. (13)
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Therefore, the bending moments will be

Mdynamic x; tð Þ ¼ EI
q2ydynamic x; tð Þ

qx2
, (14)

Mdynamic x; tð Þ ¼ EI
X

i

q2vi xð Þ

qx2
Ai 1� cos oitð Þð Þ (15)

and the shear forces will be given by

Vdynamic x; tð Þ ¼
qMdynamic x; tð Þ

qx
¼ EI

q3ydynamic x; tð Þ

qx3
, (16)

Vdynamic x; tð Þ ¼ EI
X

i

q3vi xð Þ

qx3
Ai 1� cos oitð Þð Þ. (17)

For sake of simplicity, let us assume that vibrational mode j is the first to be excited by the application of load
q(x). In most cases j will be equal to 1, but because it depends on load q(x), this will not always be the case. In
this case, the maximum vertical deflection at the location x on the x-axis due to the first vibrational mode to be
excited is

yj;max xð Þ ¼ sin jp
x

L

� �
Aj2 (18)

and the maximum deflection due to vibrational mode i is

yi;max xð Þ ¼ sin ip
x

L

� �
Ai2. (19)

Let us assume that for a section x, the maximum vertical movement due to the vibrational mode i is ki times
the maximum vertical movement due to vibrational mode j:

ki xð Þ ¼
yi;max xð Þ

yj;max xð Þ
¼

sin ip
x

L

� �
Ai

sin jp
x

L

� �
Aj

. (20)

If for the same section x, the relation between the maximum bending moment due to vibrational mode i and
the maximum bending moment due to vibrational mode j is calculated, it follows:

Mi;max xð Þ

Mj;max xð Þ
¼

i2

j2
ki xð Þ. (21)

Moreover, if the relation between the maximum shear force due to vibrational mode i and the maximum shear
force due to vibrational mode j is also calculated at the same section, this relation becomes:

V i;max xð Þ

V j;max xð Þ
¼

i3

j3
ki xð Þ. (22)

The weight of the different vibrational modes in the dynamic response therefore depends on the
type of movement or the internal force that are dealt with. The vibrational modes associated with high
frequency vibrations have a larger weight in the shear forces than in the moments, and also larger than in the
deflections.

We can also conclude on that basis that, in order to reach an accurate approximation to the dynamic
response, the number of vibrational modes to be considered will depend on the type of response to be
obtained. Thus, if we wished to obtain shear forces, it would be necessary to consider a larger number of
vibrational modes than for bending moments, and a much larger number than for deflections.
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If we then define the DAF related to bending moments as the ratio of the maximum bending moment to the
static bending moment, it follows:

DAFbending moments xð Þ ¼ 2þ
X

i

Mi;max xð Þ

Mstatic xð Þ

����
����2d��i . (23)

The maximum bending moment will occur at the instant of the maximum values for the functions (1�cos(oit))
associated with the vibrational modes for which the projection of the structural response (in this case, the
structural response related to bending moments) is positive, while the functions (1�cos(oit)) associated with
the vibrational modes for which the projection of the structural response is negative are annulled. In such a
way as d�i was defined, d��i can be set as follows:

d��i ¼

1 if
Mi;max xð Þ

Mstatic xð Þ
o0;

0 if
Mi;max xð Þ

Mstatic xð Þ
X0:

8>>>><
>>>>:

(24)

If the projection of the bending moment on this vibrational mode is positive, then d��i ¼ 0, and if it is negative
d��i ¼ 1.

The vibrational modes associated with negative projections have a larger weight in the structural response
for bending moments than for deflections, and consequently the dynamic amplification factors related to
bending moments can be larger than those related to deflections.

In several previous studies [9,16], it has been noted that, under experimental conditions, the dynamic
amplification factors related to bending moments are larger than those related to deflections, although no
reasons were given for this fact.

We can obtain the dynamic amplification factor related to shear forces in the same way.

DAFshear forces xð Þ ¼ 2þ
X

i

V i;max xð Þ

V static xð Þ

����
����2d���i (25)

with

d���i ¼

1 if
Vi;max xð Þ

V static xð Þ
o0;

0 if
Vi;max xð Þ

V static xð Þ
X0:

8>>>><
>>>>:

(26)

If the projection of the shear force on this vibrational mode is positive, then d���i ¼ 0 and if it is negative d���i ¼ 1.
The vibrational modes associated with negative projections have a larger weight in the structural response

for shear forces than for bending moments, and consequently the DAFs related to shear forces can be larger
than the DAFs related to bending moments, which are in turn, larger than the DAFs related to deflections; but
there must be at least one vibrational mode with negative projection onto the several responses (defections,
rotations, bending moments, shear forces, etc.).

6. Application to an isostatic beam

Through an example, we will now determine the dynamic amplification factors for a simply supported beam
in the case of two actions: (1) the application of a point load at mid-span, and (2) the application of two point
loads at third-span (Fig. 1)
100 kN 50 kN 50 kN

7.50 m 7.50 m 5.00 m 5.00 m 5.00 m

CASE I CASE II

Fig. 1. Load cases. Cases I and II.
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T1: 0.1432 s

T2: 0.0358 s

T3: 0.0173 s

T5: 0.0090 s

T4: 0.0159 s

T6: 0.0058 s

T7: 0.0057 s

T8: 0.0040 s

T9: 0.0035 s

T10: 0.0029 s

T12: 0.0022 s

T11: 0.0025 s

T13: 0.0019 s

T14: 0.0018 s

Fig. 2. Vibrational modes considered and the associated periods (Cases I and II).
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A 15m long beam, with a 0.60m2 cross section and 0.05m4 moment of inertia, is considered. The structural
material is concrete with a Young’s modulus of 30GPa and a unit weight of 25 kN/m3.

In both cases we assume that the structure is not damped and that the loads are applied instantaneously. We
obtain the dynamic response by means of modal superposition, taking the first 14 vibrational modes of the
structure, as shown in Fig. 2. The response is integrated during the first 10 s, using time increments of 10�4 s.

6.1. Case 1. Load applied at mid-span

In the first case, when the load is applied at mid-span, only the symmetrical vibrational modes (modes 1, 4,
7, 10 and 14) are activated. The projection of the dynamic response on the non-symmetrical vibrational modes
(modes 2, 5, 8 and 12) and on the modes related to the axial response (modes 3, 6, 9, 11 and 13) is zero.

Table 1 shows the projection of the structural response on the different vibrational modes. In the cases of
deflections and bending moments at mid-span, the projection of the static response on all the vibrational
modes that have been considered is positive, so the maximum deflection and the maximum moment are both
twice the static value. Consequently, in this case the DAF related to deflection and the DAF related to
moments are exactly equal to 2.

Table 2 shows how the first five active vibrational modes (modes 1, 4, 7, 10 and 14) can be used to represent
100% of the response in deflections and 96.3% of the response in moments.

Let us now consider the energy. Since there is no damping, the total energy of the system is conserved. The
total energy of the system is the sum of the kinetic energy, the deformation energy and the potential energy of
the external forces. We calculate an energy balance for determining how each energy varies over time. At the
initial time the structure starts from a position with no deformation and no velocity, therefore the deformation
energy, the kinetic energy, the potential energy of the external forces and the total energy of the system are all
equal to zero. Since there is no damping, the total energy of the system will remain zero over time. As the
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Table 1

Response at mid-span (Case I)

Mode Deflection at mid-span (mm) Bending Moment at mid-span (MNm)

Static Dynamic Static Dynamic

1 �4.620 �9.239 0.304 0.609

4 �0.057 �0.114 0.034 0.068

7 �0.007 �0.015 0.012 0.025

10 �0.002 �0.004 0.006 0.013

14 �0.001 �0.001 0.004 0.008P
(5 first active modes) �4.687 �9.373 0.361 0.723

Maximum �9.373 0.723

DAF 2.000 2.000

Table 2

Accuracy of the calculated response (Case I)

Static response Deflection at mid-span (mm) Bending Moment at mid-span (MNm)

With 5 first active modes �4.687 0.361

Exact �4.688 0.375

Percentage represented (%) 100.0 96.3

Table 3

Energy balance at five different instants (Case I)

Deformation

energy (kJ)

Kinetic

energy (kJ)

Potential energy of

external forces (kJ)

Total energy (kJ)

(1) Maximum deflection at mid-span 0.93735 0.00000 �0.93735 0.00000

(2) Maximum bending moment at mid-span 0.93735 0.00000 �0.93735 0.00000

(3) Maximum deformation energy 0.93735 0.00000 �0.93735 0.00000

(4) Maximum kinetic energy 0.23409 0.23434 �0.46843 0.00000

(5) Maximum negative potential energy of

external forces

0.93735 0.00000 �0.93735 0.00000

Static equilibrium 0.23434 0 �0.46868 �0.23434
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structure is deformed, the potential energy of the external forces will decrease and the deformation energy and
the kinetic energy will increase. When the equilibrium position, corresponding to the static deformation, is
crossed, the deformation energy will continue to increase, the potential energy of the external forces will
continue to decrease, and the kinetic energy will begin to decrease. When the kinetic energy reaches zero, the
deformation energy is equal to the potential energy of the external forces. Table 3 shows the values for each of
these energies at five different instants: (1) when the maximum deflection is reached at mid-span, (2) when the
maximum moment is reached at mid-span, (3) when the maximum deformation energy is reached, (4) when the
maximum kinetic energy is reached and (5) when the potential energy of the external forces reaches its
minimum value. The values of the energies at static equilibrium are also shown.

At static equilibrium, the value of the deformation energy (Ue) is equal in absolute value to half the
potential energy of the external forces (�2Ue), and to the total energy (�Ue). When the load is applied
abruptly, the system has a total energy of zero, i.e. it has an extra-energy of Ue in comparison with its energy in
the case of static equilibrium. This is the energy that permits the movement of the structure and that is
dissipated by damping in the case of a damped structure.
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When all the harmonic functions associated with the vibrational modes take a value of 1, the structure
crosses the equilibrium position and therefore its deformation energy is equal to Ue and the potential energy of
the external forces is �2Ue. Since the total energy must be zero, at that instant the kinetic energy will be equal
to Ue, i.e. all the extra-energy will be in the form of kinetic energy.

When all the harmonic functions associated with the vibrational modes take a value of 2, the structure will
have a deformation that will double the deformation corresponding to the equilibrium position. The
deformation energy will be four times the energy corresponding to the equilibrium position (4Ue) and the
potential energy of the external forces will be double the energy corresponding to the equilibrium position
(�4Ue). Since the total energy is equal to zero, the kinetic energy will also be equal to zero.

Since in this case the structural response has a positive projection on all the vibrational modes, the
maximum deflection is produced when the associated harmonic functions have a value of 2. Therefore, the
maximum deformation energy and the minimum potential energy of the external forces are also produced at
that instant, as seen in Table 3.

6.2. Case 2. Loads applied at third-span

In the second case, where the loads are applied at third-span, only some symmetrical vibrational modes
(modes 1, 7 and 10) are activated. Certain symmetrical vibrational modes (modes 4 and 14) are not activated
because in these modes there is bending moment at mid-span but none at third-span, and since the static
response has a constant moment in the middle third of the beam, the projection on these two vibrational
modes is zero. The projection of the dynamic response on the non-symmetrical vibrational modes (modes 2, 5,
8 and 12) and on the modes that mobilise the axial response (modes 3, 6, 9, 11 and 13) is also zero.

Table 4 shows the static and dynamic response in deflection and in bending moments of the section located
at third-span. All the vibrational modes considered have positive projection on the static response and the
dynamic amplification factors related to deflection and to bending moments take a value of 2.

Table 5 shows the static and dynamic response in deflections and in bending moments at mid-span. Two of
the three vibrational modes considered (modes 7 and 10) have negative projections on the static response.
Thus, the maximum deflection and maximum moment occur when the harmonic function associated with
vibrational mode 1 takes its maximum value, i.e. 2, and the harmonic functions associated with vibrational
modes 7 and 10 are zero. Since there are vibrational modes with negative projections on the static response,
the dynamic amplification factors are larger than 2. These modes (modes 7 and 10) have larger weight in the
bending response than in the deflection response, and so the DAF related to bending moments (2.133) is larger
than the DAF related to deflection (2.004).

Table 5 shows that the model fails to capture the instant when the maximum deflection and maximum
moment occur at mid-span. Thus it would be necessary to calculate the response over a longer period and with
smaller time increments. In any case, the values provided by the model do give DAFs larger than 2.

With the 14 vibrational modes, it is possible to represent 100% of the response in deflection both at the
section located at third-span and at the section located at mid-span, 97% of response in bending moments at
third-span and 99% of the response in bending moments at mid-span, as seen in Table 6.
Table 4

Response at third-span (Case II)

Mode Deflection at third-span (mm) Bending moment at third-span (MNm)

Static Dynamic Static Dynamic

1 �3.465 �6.930 0.228 0.456

7 �0.006 �0.011 0.009 0.019

10 �0.001 �0.003 0.005 0.010P
(3 first active modes) �3.472 �6.944 0.242 0.485

Maximum �6.944 0.485

DAF 2.000 2.000
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Table 5

Response at mid-span (Case II)

Mode Deflection at mid-span Bending moment at mid-span

Static (mm) Dynamic (mm) Weights (%) Static (MNm) Dynamic (MNm) Weights (%)

1 �4.001 �8.002 100.2 0.264 0.527 106.6

7 0.006 0.013 �0.2 �0.011 �0.022 �4.4

10 0.002 0.003 0.0 �0.006 �0.011 �2.3P
(3 first active modes) �3.993 �7.986 0.247 0.494

Actual Maximum �8.002 0.527

Calculated Maximum �7.990 0.526

DAF 2.004 2.133

Table 6

Accuracy of the calculated response (Case II)

Static response At third-span At mid-span

Deflection (mm) Bending moment

(MNm)

Deflection (mm) Bending moment

(MNm)

With 3 first active modes �3.472 0.242 �3.993 0.247

Exact �3.472 0.250 �3.993 0.250

Percentage represented (%) 100.0 97.0 100.0 98.8
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Let us consider again what happens as regards energy. At the initial moment the structure starts from a
position with no deformation and zero velocity, so that the deformation energy, the kinetic energy, the
potential energy of the external forces and the total energy of the system are all equal to zero. Since there is no
damping, the total energy of the system will remain zero over time. This is exactly the same as in Case I.

In the case of deflection and bending moments at third-span, the response of the structure has a positive
projection on all the vibrational modes considered. Consequently, when the harmonic functions associated with
all the vibrational modes take a value of 2, the maximum dynamic response (maximum deflection and maximum
bending moments) at third-span are reached. At this instant the deformation energy will be maximum (4Ue), the
potential energy of the external forces will be minimum (�4Ue) and the kinetic energy will be zero.

The responses of the structure in deflections and bending moments at mid-span have negative projections on
some vibrational modes, so the maximum response will occur when the harmonic functions associated with
modes with a positive projection take a value of 2, while the harmonic functions associated with modes with a
negative projection are equal to zero. At this instant the kinetic energy of the system will also be zero, since
none of the vibrational modes will have a velocity component. At this instant, since not all the harmonic
functions take a value of 2, the deflection at the point where the load is applied (third-span) will not be
maximum. Consequently, the potential energy of the external forces will not take its minimum value. Given
that the kinetic energy is equal to zero, the deformation energy will not take its maximum value either. This is
compatible with the fact that the deflections at mid-span are higher than twice the static values, since at many
other points of the structure the deflections will be less than twice the static values; therefore, the deformation
energy is less than the maximum deformation energy (which occurs when the dynamic deflection at all the
points in the structure is twice the value of the static deflection). The total energy remains conserved.

As shown in Table 7, with the introduced model, the maximum deflection at mid-span (�7.990mm; Table 5)
does not occur at the same instant as the maximum moment at mid-span (0.526MNm; Table 5), since the
energies associated with these two instants are different and the kinetic energy is not equal to zero. If the
model had captured the instant when the maximum deflection (�8.002mm; Table 5) and the maximum
moment (0.527MNm; Table 5) occur at mid-span, the energies would coincide, since both occur at the same
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Table 7

Energy balance at seven different instants (Case II)

Deformation

energy (kJ)

Kinetic

energy (kJ)

Potential energy of the

external forces (kJ)

Total energy (kJ)

(1) Maximum deflection at third-span 0.69435 0.00000 �0.69435 0.00000

(2) Maximum bending moment at third-span 0.69435 0.00000 �0.69435 0.00000

(3) Maximum deflection at mid-span 0.69353 0.00025 �0.69378 0.00000

(4) Maximum bending moment at mid-span 0.68905 0.00197 �0.69102 0.00000

(5) Maximum deformation energy 0.69435 0.00000 �0.69435 0.00000

(6) Maximum kinetic energy 0.17343 0.17359 �0.34701 0.00000

(7) Maximum negative potential of the external

forces

0.69435 0.00000 �0.69435 0.00000

Static equilibrium 0.17359 0.00000 �0.34718 �0.17359

Table 8

Dynamic amplification factors obtained by means of direct integration (Case II)

At third-span At mid-span

Deflection (mm) Bending moment (MNm) Deflection (mm) Bending moment (MNm)

Maximum value �6.944 0.4965 �8.002 0.5342

Static value �3.472 0.25 �3.993 0.25

DAF 2.000 1.986 2.004 2.137
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instant (when the harmonic function associated with vibrational mode 1 is equal to 2 and the harmonic
functions associated with vibrational modes 7 and 10 are equal to zero).

For this second case of loading, if a dynamic integration over time rather than a modal superposition is
carried out, over 10 s with an integral increment of 10�5 s, we are able to represent 100% of the static response,
both in deflection and in bending moments. Direct integration is equivalent to considering all the active
vibrational modes rather than just the first three. Table 8 shows the obtained values of the dynamic
amplification factors, which are practically equal to those obtained by means of modal superposition.

It should be noted that the model does not capture the maximum dynamic moment at third-span, which is
0.50MNm. This would require calculation of the response over a longer period of time with smaller time
increments than those used.

In any event, the aspect that we wish to stress is that the dynamic amplification factors are larger than 2.
Having completed this numerical analysis, we believe that it was to be expected that, in this second case of

loading, the dynamic amplification factors would be larger than 2 in the section located at mid-span of the
beam. In fact, we already knew this before carrying out any calculations. Let us explain. As Fig. 3 shows, in a
simply supported beam with a span L, when two loads Q are applied at third-span a static bending moments
diagram is produced that grows linearly up the third-spans (remaining constant in the central third part of the
span) whose value is QL/3. Considering only one vibrational mode, we would obtain a bending moments
diagram that would give a larger moment at mid-span than at third-span, and we would need at least a second
vibrational mode with negative projection on the response of the structure at mid-span to give a constant
bending moments diagram throughout the middle third part of the beam. Consequently, since there is a
vibrational mode with negative projection on the response of the structure, the dynamic amplification factor
will be larger than 2.

Similarly, we can see how in the first case of loading, when a point load is applied at mid-span, there are
sections near the supports where the dynamic amplification factor will be larger than 2. In this case, this fact
is less important than in the previous case, since the factors that are larger than 2 occur in sections that are
not critical.
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Fig. 3. Estimation of the first two active vibrational modes (Cases I and II).
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Fig. 4. Schematic elevation of the bridge.
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7. Application to a bridge with under-deck stay cables

In the previous section, it has been shown by means of a simple example that dynamic amplification factors
can be larger than 2 when an abrupt load is applied. This fact is very important in the design of cable-stayed
bridges, since the abrupt action due to the accidental breakage of stay cables must be considered. Through this
new example, it will be shown that dynamic amplification factors may be larger than 2 for cable-stayed
bridges.

The dynamic response of a bridge with under-deck stay cables will be studied in the event of the accidental
breakage of a stay cable.

The bridge has a span of 80m. The deck is made of a hollow concrete slab with a characteristic strength of
40MPa. Fig. 4 shows an elevation of the bridge and Fig. 5 shows the cross section used in the analysis. We
used this cross section to represent a different type of cross section that is more appropriate from a
construction point of view, as shown in Fig. 6. The weight of the deck is 188.25 kN/m and the dead load is
43.10 kN/m.

The under-deck cable-staying system is made up of five stay cables with a total cross section comprising 258
strands, of 140mm2 each one of them. The characteristic tensile strength of these cables is 1860MPa. The
under-deck cable-staying system is deviated by means of two struts that divide the span into equal portions.
The stay cables are blocked where they cross through the deviator. The eccentricity of the under-deck cable-
staying system at mid-span is 8m.
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Fig. 5. Cross section of the bridge used in the analysis stage.

Fig. 6. Real cross section of the bridge.
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Fig. 7. Scheme of breakage of a stay cable between struts.
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We obtained the dynamic response of the bridge due to the sudden accidental breakage of one of the five
stay cables located in the central part of the bridge between the deviators, located on the bottom part of the
struts (Fig. 7).

To obtain the dynamic response, the stay cable concerned by the breakage is eliminated from the model and
the forces applied by this stay cable before breakage are applied at the anchor points. At the initial time, the
breakage of the eliminated stay cable occurs and, as a result, the force that had been acting upon the anchor
points disappears abruptly. Therefore, at the same instant an equal and opposite force is applied. The
structure is not in equilibrium, so it begins to oscillate around the final equilibrium position, which is reached
once the accumulated energy has been dissipated due to the damping of the structure. A damping ratio equal
to 2% has been adopted for all the vibrational modes (similar values have been measured in Glacis Bridge [30]
and Takehana Bridge [31], both of which are under-deck cable-stayed bridges).

During the time necessary to stop the movement, we analysed the records of the internal forces acting on the
deck and on the stay cables. We compared these internal forces to the static internal forces caused by the
action, which allowed us to evaluate the dynamic amplification factors related to the different internal forces
and movements.

The dynamic response was obtained from a modal analysis in which a total of 12 vibrational modes were
taken into account. Fig. 8 shows the seven modes activated in the structural response.

Fig. 9 shows the DAFs related to the bending moments in the deck. In many areas of the deck, these DAFs
are larger than 2, even in the critical mid-span section. Therefore, if we had obtained the maximum dynamic
response on the basis of the static response multiplied by a dynamic amplification factor equal to 2, we would
have obtained internal forces weaker than the actual internal forces, leaving us on the unsafe side. In this
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Fig. 8. First vibrational modes excited in the dynamic response due to the breakage of a stay cable.
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example, we see once again that the dynamic amplification factors in the event of accidental breakage of stay
cables can be larger than 2. This should lead to reconsider the calculation procedure proposed in some
guidelines for cable-stayed bridges, which advise an equivalent static calculation adopting a DAF equal to 2,
on the assumption that it is an upper limit; however, the results obtained in that way will be unsafe.

We will now go on to describe the DAFs related to bending moments in three sections of the deck: one
located at a distance of 4m from the support (DAF ¼ 4.22), another located above the struts (DAF ¼ 1.42)
and a third at the mid-span section (DAF ¼ 2.79).

Table 9 shows the maximum bending moment in the section located at a distance of 4 metres from the
support and its projection on the different vibrational modes. It also shows the maximum amplitude of
the projection on each vibrational mode and the value of the projection after damping of the response. Thus,
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Fig. 9. DAFs related to the bending moments of the deck.

Table 9

Dynamic response at a section located 4m from the support

Mode Bending moments at the point located at a distance of 4m from the support

Bending moment at t ¼ 0.68 s

(MNm)

Maximum bending moment

of each mode (MNm)

Bending moment at t ¼N

(MNm)

1 +0.801 +0.807 +0.416

5 �0.300 �0.914 �0.471

6 �0.027 �0.054 �0.028

7 +0.516 +0.814 +0.420

10 �0.013 �0.028 �0.014

11 �0.084 �0.175 �0.090

12 �0.025 �0.050 �0.026P
(7 first active modes) 0.868 +0.207

All modes 0.866 +0.205

DAF 4.2
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the DAF related to moments in this section will be given by the expression:

DAFbending moment ¼
0:801� 0:300� 0:027þ 0:516� 0:013� 0:084� 0:025

0:416� 0:471� 0:028þ 0:420� 0:014� 0:090� 0:026
¼ 4:2. (27)

There are several modes (modes 5, 6, 10, 11 and 12) for which the projection of the response on the vibrational
mode is negative. In other words, the projection on the mode has the opposite sign to the value of the total
response at infinity, which is just the static response.
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Table 10

Dynamic response at a section located at third-span, over the strut

Mode Bending Moments at the point located over the strut

Bending moment at

t ¼ 0.115 s (MNm)

Maximum bending moment

of each mode (MNm)

Bending moment at t ¼N

(MNm)

1 +0.021 +0.273 +0.141

5 +0.572 +0.859 +0.443

6 �0.014 �0.060 �0.031

7 +0.726 +0.822 +0.424

10 +0.049 +0.058 +0.030

11 +0.418 +0.056 +0.261

12 +0.159 +0.217 +0.112P
(7 first active modes) +1.931 +1.380

All modes +1.940 +1.366

DAF 1.4

Table 11

Dynamic response at mid-span

Mode Bending Moments at mid-span

Bending moment at

t ¼ 0.654 s (MNm)

Maximum bending moment

of each mode (MNm)

Bending moment at t ¼N

(MNm)

1 +4.104 +4.106 +2.116

5 �0.255 �1.247 �0.643

6 0 0 0

7 �0.132 �0.393 �0.203

10 +0.010 +0.020 +0.010

11 +0.062 +0.122 +0.063

12 +0.012 +0.024 +0.012P
(7 first active modes) +3.801 +1.355

All modes +3.811 +1.366

DAF 2.8
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Table 10 shows the bending moments in the section of the deck located over the strut. Thus, the DAF
related to bending moments at this section will be given by the expression:

DAFbending moment ¼
0:021þ 0:572� 0:014þ 0:726þ 0:049þ 0:418þ 0:159

0:141þ 0:443� 0:031þ 0:424þ 0:030þ 0:261þ 0:112
¼ 1:4. (28)

However, in this section there is only one vibrational mode (mode 6) on which the response of the structure
has a negative projection, but the weight of that mode in the response is very small (2%). The fact that the
weight of this mode is very small and the fact that the structure is damped give rise to a substantial reduction
of the dynamic amplification factor.

Table 11 shows the bending moments in the section of the deck at mid-span. Thus, the DAF related to
bending moments in this section will be given by the expression:

DAFbending moment ¼
4:104� 0:255� 0:132þ 0:010þ 0:062þ 0:012

2:116� 0:643� 0:203þ 0:010þ 0:063þ 0:012
¼ 2:8. (29)
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In this section there are once again several vibrational modes on which the projection of the response of the
structure is negative (modes 5 and 7), and these are modes with substantial weight in the responses (47% and
15% respectively), which considerably increase the value of the dynamic amplification factor.

In addition, a direct integration was performed confirming the accuracy of the solution calculated by means
of modal superposition.

We obtained the DAFs related to bending moments, we also obtained the DAFs related to deflections and
the DAFs related to axial forces. In the deck at mid-span, the DAF related to deflection is 1.97; the DAF
related to moments is 2.80 and the DAF related to axial forces is 28.53. As the vibrational modes associated
with high frequencies gain in weight, given the existence of modes with negative projection, the DAFs increase
and can reach values that are much larger than 2.

If we consider once again the form of the static bending moments diagram in the case of the breakage of a
stay cable, we see that it resembles the bending moments diagram in the second case of loading in Section 6
(Fig. 3). Therefore, using a similar approach, we could have predicted values for the dynamic amplification
factors at mid-span larger than 2.

8. Conclusions
(i)
 Dynamic amplification factors for sudden applied loads to systems with several dofs can be larger than 2,
but in order for this to be the case there must be at least one mode on which the projection of the
structural response is negative with significant weight. The larger the weight of these modes is, the larger
the dynamic amplification factors will be.
(ii)
 Dynamic amplification factors are reduced with an increase in the damping of the structure, attaining a
value of 1 for critical damping.
(iii)
 If there is not any vibrational mode on which the projection of the structural response is negative, the
dynamic amplification factor for sudden applied loads will be exactly 2 in undamped systems and less
than 2 in damped systems.
(iv)
 The weight of the different vibrational modes in the response of the structure depends on the type of
internal force or movement involved. The weight of the vibrational modes associated with high
frequencies is larger in the response in bending moments than in the response in deflections. The weight
of vibrational modes associated with high frequencies increases progressively from deflections to shear
forces in the order: deflections - rotations - bending moments - shear forces. Consequently, if there
are vibrational modes with negative projection in the several responses (deflections, rotations, bending
moments, shear forces, etc.), the dynamic amplification factors also increase respectively in the same
order.
(v)
 The dynamic amplification factors are specific to each section, to each response (movement or internal
force), to each action considered and to the structure.
(vi)
 Given that a DAF equal to 2 is not an upper limit in the case of actions applied abruptly to a structure,
it is advisable to evaluate maximum internal forces by means of a dynamic analysis since there is a
lack of research studies which establish the order of magnitude of these factors in conventional
structures.
(vii)
 In cable-stayed structures, the DAFs related to internal forces as a result of the abrupt breakage of a stay
cable can be larger than 2. Thus, following the guidelines for cable-stayed bridges and carrying out a
static calculation in which the forces are amplified by a DAF of 2 can underestimate loads even when the
maximum internal forces in critical sections of the structure are assessed.
(viii)
 We must revise the guidelines for cable-stayed bridges [22–24] as well as the draft of the Eurocode 3–Part
1.11 [25] in connection with the accidental action caused by the abrupt breakage of stay cables. It would
be particularly advisable to carry out dynamic analysis when it is known that vibrational modes can exist
with negative projection on the response of the structure, because in such cases, the DAFs can attain
values larger than 2. Due to such an accidental action we can predict DAFs related to bending moments
larger than 2 in critical sections not only in bridges with under-deck cable-staying, but also in
conventional cable-stayed bridges (e.g. in the event of the simultaneous breakage of two consecutive
stay cables).
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(ix)
 Given the calculation tools currently available for assessing structures, we believe that a dynamic
analysis should always be made for large structures.
(x)
 It would be advisable to carry out a research project to evaluate the DAFs related to the different
internal forces in conventional cable-stayed structures with the aim of establishing some values for
guidance to be taken into account in the pre-dimensional stage of the structure design.
(xi)
 From a practical point of view, the shape of the functions F(t) for a breakage of the stay cables (F(t)6¼0 if
totbreakage; and F(t) ¼ 0 if t X tbreakage) does not affect the values of the maximum internal forces if the
breakage time is negligible in comparison to the fundamental period of the structure (tbreakage5T1). In
that case, the assumption tbreakage ¼ 0 can be made, obtaining an upper limit of the DAF which is almost
equal to the real value. The shorter the breakage time in comparison with the fundamental period of the
structure, the larger dynamic amplification factors.
(xii)
 In cable-stayed bridges, the assumption tbreakage ¼ 0 can be made in the event of an abrupt breakage of
stay cables due to impacts. Although there is no experimental data on the breakage time of stay cables
due to collisions, these values will be negligible in comparison to the fundamental period of the structure
(tbreakage5T1). However, the assumption tbreakage ¼ 0 is too conservative in the event of a slower
breakage of stay cables due to another reason. In other types of cable-stayed structures with smaller
vibration periods (as in roof structures), this assumption is too conservative even in the case of an abrupt
breakage of stay cables due to impact, and consequently new lines of research should be undertaken in
this respect.
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